


will be : **(A)** 

0.2 M

**(B)** 

10.3 M

| solution acidic because:  (A) It does not react with KMnO <sub>4</sub> or the reducing agent  (B) Hydrochloric acid reacts with KMnO <sub>4</sub> (C) Nitric acid is an oxidising agent which reacts with reducing agent  (D) All of the above are correct  (D) All of the above are correct  (D) All of the above are correct  (E) The compound YBa <sub>2</sub> Cu <sub>n</sub> O <sub>7</sub> has copper in oxidation state +1. Assume that the rare earth eler Yttrium is in its usual +3 oxidation state. The value of n is:  (A) 3/7 (B) 7/3 (C) 3 (D) 7  (Or Question No. 88 - 89  (A) Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement Statement-1 is False, Statement-1 is True.  Statement-1 is False, Statement-2 is True.  Statement-1: Stannous chloride is a powerful oxidising agent which oxidises mercuric chloric mercury.  Statement 2: Stannous chloride gives grey precipitate with mercuric chloride, but stannic chlored does not do so.  Statement 1: H <sub>2</sub> SO <sub>4</sub> cannot act as reducing agent.  Statement 2: Sulphur cannot increase its oxidation number beyond + 6.  Among the following, identify the species with an atom in +6 oxidation state.  (A) Ba <sub>2</sub> XeO <sub>6</sub> (B) XeO <sub>3</sub> (C) CrO <sub>5</sub> (D) SO <sub>2</sub> Cl <sub>2</sub> (A) Ba <sub>2</sub> XeO <sub>6</sub> (B) XeO <sub>3</sub> (C) CrO <sub>5</sub> (D) SO <sub>2</sub> Cl <sub>2</sub> (A) M/2 (B) M/8 (C) M/3 (D) M  (D)                                                                                                                                             | Date Planned :// |                                                                                                                                                  |                                                              |                         | Daily                        | Daily Tutorial Sheet-7 |                                                    |            | Expected Duration : 90 Min |            |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------|------------------------------|------------------------|----------------------------------------------------|------------|----------------------------|------------|--|
| solution acidic because:  (A) It does not react with KMnO <sub>4</sub> or the reducing agent (B) Hydrochloric acid reacts with KMnO <sub>4</sub> (C) Nitric acid is an oxidising agent which reacts with reducing agent (D) All of the above are correct (T) The compound YBa <sub>2</sub> Cu <sub>n</sub> O <sub>7</sub> has copper in oxidation state +1. Assume that the rare earth eler Yttrium is in its usual +3 oxidation state. The value of n is: (A) 3/7 (B) 7/3 (C) 3 (D) 7  For Question No. 88 - 89 (A) Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1.  Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1.  Statement-1 is True, Statement-2 is True.  Statement-1 is False, Statement-2 is True.  Statement-1 is False, Statement-2 is True.  Statement-1: Stannous chloride is a powerful oxidising agent which oxidises mercuric chloric mercury.  Statement 2: Stannous chloride gives grey precipitate with mercuric chloride, but stannic chlodoes not do so.  Statement 2: Sulphur cannot increase its oxidation number beyond + 6.  Anong the following, identify the species with an atom in +6 oxidation state.  (A) Ba <sub>2</sub> XeO <sub>6</sub> (B) XeO <sub>3</sub> (C) CrO <sub>5</sub> (D) SO <sub>2</sub> Cl <sub>2</sub> In the estimation of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> using Br <sub>2</sub> the equivalent weight of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> is:  (A) M/2 (B) M/8 (C) M/3 (D) M  13. A 0.1097 gm sample of As <sub>2</sub> O <sub>3</sub> required 26.10 mL of KMnO <sub>4</sub> solution for its titration. The molari KMnO <sub>4</sub> solution is:  (A) 0.02 (B) 0.04 (C) 0.018 (D) 0.3  44. In basic medium, CrO <sub>4</sub> <sup>2</sup> oxidizes S <sub>2</sub> O <sub>3</sub> <sup>2</sup> to form SO <sub>4</sub> <sup>2</sup> and itself changes to Cr(OH) <sub>4</sub> . How many no.154 M CrO <sub>4</sub> <sup>2</sup> are required to react with 40 mL of 0.246 M S <sub>2</sub> O <sub>3</sub> <sup>2</sup> ?  (A) 200 mL (B) 156.4 mL (C) 170.4 mL (D) 190.4 mL                                                                                                                                                                                                                                                                                                     | Actu             | al Date                                                                                                                                          | of Attempt : _                                               | _/_/_                   |                              | Level-2                |                                                    |            | Exact Duration :           |            |  |
| (D) All of the above are correct  37. The compound YBa <sub>2</sub> Cu <sub>n</sub> O <sub>7</sub> has copper in oxidation state +1. Assume that the rare earth elect Yttrium is in its usual +3 oxidation state. The value of n is:  (A) 3/7 (B) 7/3 (C) 3 (D) 7  Statement 1 is True, Statement 2 is True and Statement 2 is a correct explanation for Statement 1. Statement 1 is True, Statement 2 is True and Statement 2 is NOT a correct explanation for Statement Statement 1 is True, Statement 2 is True.  Statement 1 is True, Statement 2 is True.  Statement 1: Stannous chloride is a powerful oxidising agent which oxidises mercuric chloric mercury.  Statement 2: Stannous chloride gives grey precipitate with mercuric chloride, but stannic chlorides not do so.  Statement 1: H <sub>2</sub> SO <sub>4</sub> cannot act as reducing agent.  Statement 2: Sulphur cannot increase its oxidation number beyond + 6.  Among the following, identify the species with an atom in +6 oxidation state.  (A) Ba <sub>2</sub> XeO <sub>6</sub> (B) XeO <sub>3</sub> (C) CrO <sub>5</sub> (D) SO <sub>2</sub> Cl <sub>2</sub> 31. In the estimation of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> using Br <sub>2</sub> the equivalent weight of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> is:  (A) M/2 (B) M/8 (C) M/3 (D) M  32. In the reaction 3ClO (aq) → ClO <sub>3</sub> (aq) + 2Cl (aq) the equivalent mass of ClO is:  (A) M/4 (B) M/3 (C) 3M (D) 3M/4  33. A 0.1097 gm sample of As <sub>2</sub> O <sub>3</sub> required 26.10 mL of KMnO <sub>4</sub> solution for its titration. The molari KMnO <sub>4</sub> solution is:  (A) 0.02 (B) 0.04 (C) 0.018 (D) 0.3  34. In basic medium, CrO <sub>4</sub> <sup>2</sup> oxidizes S <sub>2</sub> O <sub>3</sub> <sup>2</sup> to form SO <sub>4</sub> <sup>2</sup> and itself changes to Cr(OH) <sub>4</sub> . How many nounce of the content of the co            | 36.              | solutio                                                                                                                                          | on acidic becaus                                             | se :<br>act with KM     | ${ m inO_4}$ or the re       |                        |                                                    | und to be  | e suitable for r           | naking the |  |
| Yttrium is in its usual +3 oxidation state. The value of n is:  (A) 3/7 (B) 7/3 (C) 3 (D) 7  For Question No. 88 - 89  A) Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1. Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement Statement-1 is True, Statement-2 is False.  Statement-1 is True, Statement-2 is True.  Statement-1 is False, Statement-2 is True.  Statement-1 is False, Statement-2 is True.  Statement 1: Stannous chloride is a powerful oxidising agent which oxidises mercuric chloride mercury.  Statement 2: Stannous chloride gives grey precipitate with mercuric chloride, but stannic chloride does not do so.  Statement 2: Sulphur cannot increase its oxidation number beyond + 6.  Among the following, identify the species with an atom in +6 oxidation state.  (A) Ba₂XeO <sub>6</sub> (B) XeO <sub>3</sub> (C) CrO <sub>5</sub> (D) SO₂Cl₂  In the estimation of Na₂S₂O₃ using Br₂ the equivalent weight of Na₂S₂O₃ is:  (A) M/2 (B) M/8 (C) M/3 (D) M  12. In the reaction 3ClO⁻(aq) → ClO₃(aq) + 2Cl⁻(aq) the equivalent mass of ClO⁻ is:  (A) M/4 (B) M/3 (C) 3M (D) 3M/4  33. A 0.1097 gm sample of As₂O₃ required 26.10 mL of KMnO₄ solution for its titration. The molari KMnO₄ solution is:  (A) 0.02 (B) 0.04 (C) 0.018 (D) 0.3  44. In basic medium, CrO₄² oxidizes S₂O₃² to form SO₄² and itself changes to Cr(OH)₄. How many nolification is:  (A) 200 mL (B) 156.4 mL (C) 170.4 mL (D) 190.4 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                                                                                                                                  |                                                              | _                       | _                            | eacts w                | th reducing a                                      | gent       |                            |            |  |
| Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1.  Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement Statement-1 is True, Statement-2 is False.  Statement-1 is True, Statement-2 is True.  Statement-1 is False, Statement-2 is True.  Statement 1: Stannous chloride is a powerful oxidising agent which oxidises mercuric chloride mercury.  Statement 2: Stannous chloride gives grey precipitate with mercuric chloride, but stannic chloroses not do so.  Statement 1: H <sub>2</sub> SO <sub>4</sub> cannot act as reducing agent.  Statement 2: Sulphur cannot increase its oxidation number beyond + 6.  Among the following, identify the species with an atom in +6 oxidation state.  (A) Ba <sub>2</sub> XeO <sub>6</sub> (B) XeO <sub>3</sub> (C) CrO <sub>5</sub> (D) SO <sub>2</sub> Cl <sub>2</sub> In the estimation of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> using Br <sub>2</sub> the equivalent weight of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> is:  (A) M/2 (B) M/8 (C) M/3 (D) M  In the reaction 3ClO <sup>-</sup> (aq) — ClO <sup>-</sup> <sub>3</sub> (aq) + 2Cl <sup>-</sup> (aq) the equivalent mass of ClO <sup>-</sup> is:  (A) M/4 (B) M/3 (C) 3M (D) 3M/4  A 0.1097 gm sample of As <sub>2</sub> O <sub>3</sub> required 26.10 mL of KMnO <sub>4</sub> solution for its titration. The molari KMnO <sub>4</sub> solution is:  (A) 0.02 (B) 0.04 (C) 0.018 (D) 0.3  A In basic medium, CrO <sup>2</sup> <sub>4</sub> oxidizes S <sub>2</sub> O <sup>2</sup> <sub>3</sub> to form SO <sup>2</sup> <sub>4</sub> and itself changes to Cr(OH) <sub>4</sub> . How many nounce the content of th | 37.              | Yttriu                                                                                                                                           | m is in its usua                                             | l +3 oxidati            | ion state. The               | value of               | n is:                                              |            |                            | th elemen  |  |
| Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1.  Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement Statement-1 is True, Statement-2 is False.  Statement-1 is True, Statement-2 is True.  Statement-1 is False, Statement-2 is True.  Statement-1 is False, Statement-2 is True.  Statement 1: Stannous chloride is a powerful oxidising agent which oxidises mercuric chloride mercury.  Statement 2: Stannous chloride gives grey precipitate with mercuric chloride, but stannic chlorides not do so.  Statement 1: H <sub>2</sub> SO <sub>4</sub> cannot act as reducing agent.  Statement 2: Sulphur cannot increase its oxidation number beyond + 6.  Among the following, identify the species with an atom in +6 oxidation state.  (A) Ba <sub>2</sub> XeO <sub>6</sub> (B) XeO <sub>3</sub> (C) CrO <sub>5</sub> (D) SO <sub>2</sub> Cl <sub>2</sub> In the estimation of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> using Br <sub>2</sub> the equivalent weight of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> is:  (A) M/2 (B) M/8 (C) M/3 (D) M  In the reaction 3ClO <sup>-</sup> (aq) — ClO <sup>-</sup> <sub>3</sub> (aq) + 2Cl <sup>-</sup> (aq) the equivalent mass of ClO <sup>-</sup> is:  (A) M/4 (B) M/3 (C) 3M (D) 3M/4  A 0.1097 gm sample of As <sub>2</sub> O <sub>3</sub> required 26.10 mL of KMnO <sub>4</sub> solution for its titration. The molari KMnO <sub>4</sub> solution is:  (A) 0.02 (B) 0.04 (C) 0.018 (D) 0.3  In basic medium, CrO <sup>2</sup> <sub>4</sub> oxidizes S <sub>2</sub> O <sup>2</sup> <sub>3</sub> to form SO <sup>2</sup> <sub>4</sub> and itself changes to Cr(OH) <sub>4</sub> . How many nounce the content of th | or Q             | uestion                                                                                                                                          | No. 88 - 89                                                  |                         |                              |                        |                                                    |            |                            |            |  |
| Statement 2: Stannous chloride gives grey precipitate with mercuric chloride, but stannic chlorides not do so.  39. Statement 1: $H_2SO_4$ cannot act as reducing agent.  Statement 2: Sulphur cannot increase its oxidation number beyond + 6.  30. Among the following, identify the species with an atom in +6 oxidation state.  (A) $Ba_2XeO_6$ (B) $XeO_3$ (C) $CrO_5$ (D) $SO_2Cl_2$ 31. In the estimation of $Na_2S_2O_3$ using $Br_2$ the equivalent weight of $Na_2S_2O_3$ is:  (A) $M/2$ (B) $M/8$ (C) $M/3$ (D) $M$ 32. In the reaction $3ClO^-(aq) \longrightarrow ClO_3^-(aq) + 2Cl^-(aq)$ the equivalent mass of $ClO^-$ is:  (A) $M/4$ (B) $M/3$ (C) $3M$ (D) $3M/4$ 33. A 0.1097 gm sample of $As_2O_3$ required 26.10 mL of $KMnO_4$ solution for its titration. The molari $KMnO_4$ solution is:  (A) $0.02$ (B) $0.04$ (C) $0.018$ (D) $0.3$ 34. In basic medium, $CrO_4^2$ oxidizes $S_2O_3^2$ to form $SO_4^2$ and itself changes to $Cr(OH)_4$ . How many $0.154 M CrO_4^2$ are required to react with 40 mL of $0.246 M S_2O_3^2$ ?  (A) $0.00 ML$ (B) $156.4 ML$ (C) $170.4 ML$ (D) $190.4 ML$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B)<br>C)         | Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1 Statement-1 is True, Statement-2 is False. |                                                              |                         |                              |                        |                                                    |            |                            |            |  |
| Statement 2: Sulphur cannot increase its oxidation number beyond + 6.  90. Among the following, identify the species with an atom in +6 oxidation state.  (A) Ba <sub>2</sub> XeO <sub>6</sub> (B) XeO <sub>3</sub> (C) CrO <sub>5</sub> (D) SO <sub>2</sub> Cl <sub>2</sub> 91. In the estimation of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> using Br <sub>2</sub> the equivalent weight of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> is:  (A) M/2 (B) M/8 (C) M/3 (D) M  12. In the reaction $3$ ClO <sup>-</sup> (aq) $\longrightarrow$ ClO <sub>3</sub> <sup>-</sup> (aq) + 2Cl <sup>-</sup> (aq) the equivalent mass of ClO <sup>-</sup> is:  (A) M/4 (B) M/3 (C) 3M (D) 3M/4  13. A 0.1097 gm sample of As <sub>2</sub> O <sub>3</sub> required 26.10 mL of KMnO <sub>4</sub> solution for its titration. The molarity KMnO <sub>4</sub> solution is:  (A) 0.02 (B) 0.04 (C) 0.018 (D) 0.3  14. In basic medium, $C$ rO <sub>4</sub> <sup>-</sup> oxidizes S <sub>2</sub> O <sub>3</sub> <sup>-</sup> to form SO <sub>4</sub> <sup>-</sup> and itself changes to $C$ r(OH) <sub>4</sub> . How many molarity MCrO <sub>4</sub> <sup>-</sup> are required to react with 40 mL of 0.246 M S <sub>2</sub> O <sub>3</sub> <sup>-</sup> ?  (A) 200 mL (B) 156.4 mL (C) 170.4 mL (D) 190.4 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 88.              | Statement 2: Stannous chloride gives grey precipitate with mercuric chloride, but stannic chloride                                               |                                                              |                         |                              |                        |                                                    |            |                            |            |  |
| Among the following, identify the species with an atom in $+6$ oxidation state.  (A) $Ba_2XeO_6$ (B) $XeO_3$ (C) $CrO_5$ (D) $SO_2Cl_2$ 1. In the estimation of $Na_2S_2O_3$ using $Br_2$ the equivalent weight of $Na_2S_2O_3$ is:  (A) $M/2$ (B) $M/8$ (C) $M/3$ (D) $M$ 12. In the reaction $3ClO^-(aq) \longrightarrow ClO_3^-(aq) + 2Cl^-(aq)$ the equivalent mass of $ClO^-$ is:  (A) $M/4$ (B) $M/3$ (C) $3M$ (D) $3M/4$ 13. A 0.1097 gm sample of $As_2O_3$ required 26.10 mL of $KMnO_4$ solution for its titration. The molari $KMnO_4$ solution is:  (A) $0.02$ (B) $0.04$ (C) $0.018$ (D) $0.3$ 14. In basic medium, $CrO_4^{2-}$ oxidizes $S_2O_3^{2-}$ to form $SO_4^{2-}$ and itself changes to $Cr(OH)_4^-$ . How many $0.154$ M $CrO_4^{2-}$ are required to react with 40 mL of $0.246$ M $S_2O_3^{2-}$ ?  (A) $0.00$ mL (B) $156.4$ mL (C) $170.4$ mL (D) $190.4$ mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.               | State                                                                                                                                            | nent 1: H <sub>2</sub> SO                                    | O <sub>4</sub> cannot a | ct as reducing               | agent.                 |                                                    |            |                            |            |  |
| (A) Ba <sub>2</sub> XeO <sub>6</sub> (B) XeO <sub>3</sub> (C) CrO <sub>5</sub> (D) SO <sub>2</sub> Cl <sub>2</sub> 91. In the estimation of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> using Br <sub>2</sub> the equivalent weight of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> is:  (A) M/2 (B) M/8 (C) M/3 (D) M  92. In the reaction 3ClO <sup>-</sup> (aq) → ClO <sub>3</sub> <sup>-</sup> (aq) + 2Cl <sup>-</sup> (aq) the equivalent mass of ClO <sup>-</sup> is:  (A) M/4 (B) M/3 (C) 3M (D) 3M/4  93. A 0.1097 gm sample of As <sub>2</sub> O <sub>3</sub> required 26.10 mL of KMnO <sub>4</sub> solution for its titration. The molari KMnO <sub>4</sub> solution is:  (A) 0.02 (B) 0.04 (C) 0.018 (D) 0.3  94. In basic medium, CrO <sub>4</sub> <sup>-</sup> oxidizes S <sub>2</sub> O <sub>3</sub> <sup>2-</sup> to form SO <sub>4</sub> <sup>-</sup> and itself changes to Cr(OH) <sub>4</sub> . How many nounce the content of                       |                  | State                                                                                                                                            | nent 2: Sulpl                                                | nur cannot ii           | ncrease its ox               | dation r               | number beyon                                       | 1 + 6.     |                            |            |  |
| <ul> <li>(A) M/2 (B) M/8 (C) M/3 (D) M</li> <li>(D) M</li> <li>(E) M/4 (B) M/3 (C) 3M (D) 3M/4</li> <li>(E) M/4 (D) 3M/4</li> <li>(E) M/4 (D) 3M/4</li> <li>(E) M/4 (D) 3M/4</li> <li>(E) M/5 (D) 3M/4</li> <li>(E) M/6 (D) M/6</li> <li>(E) M/6 (D) M/7</li> <li>(E) M/7</li> <li>(E) M/8 (D) M/8</li> <li>(E) M</li></ul>                                                                                                                                                                                                                                                                                                                                    | 90.              | •                                                                                                                                                |                                                              |                         | _                            |                        |                                                    |            | $SO_2Cl_2$                 |            |  |
| (A) M/4 (B) M/3 (C) 3M (D) 3M/4  33. A 0.1097 gm sample of $As_2O_3$ required 26.10 mL of $KMnO_4$ solution for its titration. The molari $KMnO_4$ solution is:  (A) 0.02 (B) 0.04 (C) 0.018 (D) 0.3  34. In basic medium, $CrO_4^{2-}$ oxidizes $S_2O_3^{2-}$ to form $SO_4^{2-}$ and itself changes to $Cr(OH)_4^{-}$ . How many nounce 0.154 M $CrO_4^{2-}$ are required to react with 40 mL of 0.246 M $S_2O_3^{2-}$ ?  (A) 200 mL (B) 156.4 mL (C) 170.4 mL (D) 190.4 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 91.              |                                                                                                                                                  |                                                              |                         |                              |                        | -                                                  |            | M                          |            |  |
| A 0.1097 gm sample of $As_2O_3$ required 26.10 mL of $KMnO_4$ solution for its titration. The molari $KMnO_4$ solution is:  (A) 0.02 (B) 0.04 (C) 0.018 (D) 0.3  1. In basic medium, $CrO_4^{2-}$ oxidizes $S_2O_3^{2-}$ to form $SO_4^{2-}$ and itself changes to $Cr(OH)_4^{-}$ . How many nounce 0.154 M $CrO_4^{2-}$ are required to react with 40 mL of 0.246 M $S_2O_3^{2-}$ ?  (A) 200 mL (B) 156.4 mL (C) 170.4 mL (D) 190.4 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 92.              | In the                                                                                                                                           | reaction 3ClO                                                | (aq) (                  | ClO <sub>3</sub> (aq) + 2 Cl | (aq) th                | e equivalent m                                     | ass of Clo | O is:                      |            |  |
| KMnO <sub>4</sub> solution is:  (A) 0.02 (B) 0.04 (C) 0.018 (D) 0.3  1. In basic medium, $CrO_4^{2-}$ oxidizes $S_2O_3^{2-}$ to form $SO_4^{2-}$ and itself changes to $Cr(OH)_4^-$ . How many none of 0.154 M $CrO_4^{2-}$ are required to react with 40 mL of 0.246 M $S_2O_3^{2-}$ ?  (A) 200 mL (B) 156.4 mL (C) 170.4 mL (D) 190.4 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | (A)                                                                                                                                              | M/4                                                          | <b>(B)</b>              | M/3                          | (C)                    | 3 M                                                | <b>(D)</b> | 3M/4                       |            |  |
| 10.154 M $\text{CrO}_4^{2^-}$ are required to react with 40 mL of 0.246 M $\text{S}_2\text{O}_3^{2^-}$ ?  (A) 200 mL (B) 156.4 mL (C) 170.4 mL (D) 190.4 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93.              | KMnC                                                                                                                                             | $0_4$ solution is :                                          |                         |                              |                        |                                                    |            |                            | molarity o |  |
| 0.154 M $CrO_4^{2-}$ are required to react with 40 mL of 0.246 M $S_2O_3^{2-}$ ?  (A) 200 mL (B) 156.4 mL (C) 170.4 mL (D) 190.4 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                                                                                                                                                  |                                                              |                         |                              |                        |                                                    |            |                            |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.               | 0.154                                                                                                                                            | $\mathrm{M}\;\mathrm{CrO}_4^{2-}\;\mathrm{are}\;\mathrm{re}$ | equired to re           | eact with 40 m               | L of 0.2               | 46 M S <sub>2</sub> O <sub>3</sub> <sup>2-</sup> ? |            |                            | nany mL o  |  |
| <b>95.</b> 20 mL of $0.2 \mathrm{MAl_2(SO_4)_3}$ is mixed with 20 mL of $0.6 \mathrm{MBaCl_2}$ . Concentration of $\mathrm{Al^{3+}}$ ion in the solu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                                                                                                                                                  |                                                              |                         |                              |                        |                                                    |            |                            |            |  |

VMC | Stoichiometry-II 160 DTS-7 | Level-2

(C)

 $0.1~\mathrm{M}$ 

**(D)** 

 $0.25 \; M$ 

 $\odot$